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Section 1 Introduction

1. Introduction

"Kronecker believed God made the natural numbers and all the rest was man's work. We
only know of this opinion by hearsay evidence^ , however, and his paper Uber den Zahlbegriff

indicates to me that he thought God made a bit more: Buchstabenrechnung , or calculation with

letters^. In modern terms, Kronecker seems to envisage a cosmic computer which computes

not just with natural numbers, but with polynomials with natural number coefficients (in any

number of indeterminates). That's the God-given hardware. The man-made software then

creates negative numbers, fractions, algebraic irrationals, and goes on from there. Kronecker

believed that such a computer, in the hand of an able enough programmer, was adequate for all

the purposes of higher mathematics"^."

The preceding notion of constructive mathematics, as postulated by Kronecker, can be ex-

panded further and leads to some very interesting algorithmic problems. While it is quite

apparent that Kronecker regarded these algorithmic questions as at the heart of his formulation

of mathematics"*, it is unclear whether Kronecker had been able to resolve these questions in a
satisfactory manner. Edwards, in his essay on Kronecker's views^, has the following to say: "I

find no such algorithm in his works. My best guesses as to the explanation of this paradox is

that he had an algorithm which he had not yet reduced to a form ready to publish, or, perhaps,

that he had an algorithm in many cases but had not yet found one in the general case. Or, as

is entirely possible, it lies somewhere in his voluminous collected works waiting to be found."

The present notes make a fresh attempt at resolving the algorithmic questions raised by
Kronecker, while remaining faithful to the notion of constructivity espoused by Kronecker. Fur-

thermore, we attempt to stay close to the approaches and concepts that were known and available

to Kronecker. In order to avoid confusion, however, we shall use modern algebraic terminology.

To understand Kronecker's notion of constructivity, we need a detailed look at the latent

algorithmic questions: According to Kronecker, the semi-ring N[a;i, X2, . . ., a;„]^ is God-given

—

-at least, a finite but significantly large fraction of it is God-given. The man-made cilgorithms

can then carry out all computations using the elements of N[a;i, x^, . . ., Xn], i.e., using only the

natural numbers and letters. Thus, even though we think of infinite sets, N, Z, Q, R and C, and
computations involving the elements of these sets, we must treat all calculations as occurring

"Supported by NSF Grant #CCR-90-02819 and ONR Grant #N00014-89-J3042, and NYU Dean's Dissertation

Fellowship.

Authors' Address: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,

New York, NY-10012.

'H. Weber. Leopold Kronecker, Jahresber. D.M.-V., 2:19, (1892).

^Leopld Kronecker's Werke, (von K. Hensel), 3: Leipzig, Druck und Verlag von B.G. Teubner, (1895).

Harold M. Edwards. Kronecker's Views on the Foundations o{ Mathematics, "Proceedings of a Conference

held at Vassar College in June 1988," (D. Rowe and J. McCleary, eds.), Academic Press, (1990).
* Werke.

^Kronecker's Views on the Foundations of Mathematics.

Here, N denotes the set of natural numbers: {0, 1, 2, . . .} and N[ii , Z2, .... Xn] denot> ~ i Ik set of multivariate

polynomials with coefficients from N and in variables i], X2, ..., x„. Both N and N[j i. t2, . . ., in] are semi-

rings—rings except that subtraction may not always be possible.
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with a finite subset of N and finitely many letters xi, X2, . . ., a:„—as if, the computations over

Z, Q, R, etc. get compiled into the low-level programs involving N[a;i, X2, . . ., x^] and then

executed.

A concept basic to the Kronecker's programme is the idea of equivalence of two elements,

A and A' of N[a;i, X2, . . ., a;„] modulo a finite collection {Mi,M2,...,M„} C N[ii,X2, . .
.,a;„].

Namely,

Definition 1.1 Given .4, A', Mi, M2, . . ., M^ G N[a;i,X2, . . ., a;„], we say that >1 ~ yl' mod (Mi,

M2, . . ., Mu) if for some </)i, <f>2, ., (t>i,, V'l, ^"2, , i^u & N[a;i, X2, . . ., a;„],

A + ^<l>,Mi = A' + J2^i^i- n
t=l i=l

If we apply the above definition to the special case of N[a:] and Mi = 1 + a; we see that any

polynomial in N[x] is equivcilent to one of the form a + bx {a, b £ N), since

x^ + 1(1 + 1) = l + x(l + x) and

x^ ~ 1 mod (1 + x).

Furthermore, it is easily seen that the following are equivalent:

a + bx ~ c + dxmod(l + x)

a + d + b{l + x) ~ c + 6 + (f(l + x) mod (1 -l-x)

a + d ~ c + 6mod(l + x)

a + d = c -\- b.

Thus, the semi-ring of equivalence classes N[x]/(1 + x) is isomorphic to the ring of integers Z.

Thus, after a preprocessing which amounts to equivalence modulo 1 + x we can feel free to use any

finite collection of integers as well as the natural numbers. Thus as we perform computations

in Z, we only need to remember that "—6" is really "6x" and after each operation, we do a

straightforward normalization to bring the representation into the form "a + 6x." Thus each

ring operation over Z corresponds to some constant number of (perhaps, five) operations in N.

For all practical purposes, God could have got us started with Z!!

In a similar way, by considering N[x, t/i, . .
., yn]/(l + x, oi + bixyi, . . ., Cn + b^xyn), we can

create any finite collection of rational numbers'^ as well. In general then, by using an arbitrary

set of modulii we can perform arithmetic in any algebraic number field or even algebraic function

field. In particular, the field of rational functions on an algebraic curve can be handled in this

way.

^Quoting Edwards: "Our impulse is to go on to construct the field of rational numbers, but Kronecker does not,

and, in fact, one cannot. One can throw in another indeterminate t [in addition to e] and another relation 1 + 10e<

(that is, two indeterminates e, t and two relations 1 + e and 1 + 10e<) to get the ring of all terminating decimal

fractions. Similarly, one can construct rings of rational numbers containing any finite set of denominators, so any

computation with rational numbers can be carried out, but the field of rational numbers as a complete infinite set

cannot be described in the way we are used to doing it. But that would not have bothered Kronecker, for whom
even the natural numbers were not a completed infinite set." (From Kronecker's Views on the Foundations of

Mathema.tics)
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Thus Kronecker's approach to the foundations of mathematics relies greatly on the problem

of computing in semi-ring, that is, the problem of deciding whether two given /I's are equivalent

modulo a given set of M's. Edwards puts it as follows*: "Based on my reading of Kronecker over

the years, I regard it as a certainty that he would have regarded it as essential that this problem

—

which he puts^ at the heart of his formulation of mathematics—can be solved algorithmicaJly,

that is, by a computational procedure which can be shown to terminate after a number of steps

for which an a priori (finite) upper bound can be given." Following our earlier discussions, we

can then formulate Kronecker's problem as:

Problem 1.1 (Kronecker's Problem)

Given: A, A', Mi, M2, . . ., Af^ G 2[xi, X2, . . ., x„].

Decide: Whether A ^ A' mod (A/i, M2, ..., M„).

Additionally, we require a finite upper bound N (perhaps depending on the parameters n,

I/, and |yl|, \A'\, \Mi\, IA/2I, • • •, |A/^|^°) on the the number of steps the decision procedure may
require. D

Let us recast Kronecker's problem in the modern ideal theoretic language. Let M denote

the ideal^^ generated by the set M = {Mi, M2, .

.

., A/j^}, i.e.,

M = iMi,M2,...,M,)

= {^S,M,\0,eZ[xi,X2,...,x„]] C Z[ii,X2,...,i„].
i=l

Then Kronecker's problem is equivalent to the ideal membership problem for Z[xi, X2, .

.

.,

In], i.e., the problem of deciding if A — A' £ M.

Problem 1.2 (Ideal Membership Problem)

Given: An idealM = {Mi, M2, . . ., M^) C Z[a;i, X2, . . ., i„] and a polynomial A 6 Z[a:i, 12,

Decide: Whether A eM.
As before, we require a finite upper bound N (perhaps again depending on the parameters

n, v, and \A\, |Afi|, IA/2I, . . ., \M^\) on the the number of steps the decision procedure may
require^^. D

Ktonecker's Views on the Foundations of Matie/natics.
^ Werke.

If Af = 2j<ei e„)eN" "<«!. .«i>>^i'
' '

' '"'"" ^ Z[ii,...,i„] then by |A/| we denote the upper bound on all

the coefficients, \a^^^ e,)!'^, and the all the degrees in each variable, e,'s and call it the size of the polynomial

M. Thus, \M\ is simply the larger of the largest coefficient in M (in its absolute value) and its degrees in each

variable.

In Kronecker's language an ideal would be called a modulsysteme . In light of our earlier discussions, Kio-

necker's terminology is quite appropriate.

'^Given A, Mi, M2, ..., M„ S Z[xi, 12, •••, in], let

0= {{ei,...,e^) : A = eiMi +-e^M^].
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The ideal membership problem has received considerable attention from the construc-

tive/computational algebra community resulting in algorithms that proceed in the spirit of

"Grobner-Buchberger" basis formulation. The ideals of Z[x] had been studied much prior to the

current work; Kronecker and Hensel enumerated^^ them in 1901. Starting in the early fifties, in

a number of research papers, Szekeres*** defined a canonical basis and used them to obtain in-

variants and to enumerate the ideals easily. Later, Szekeres^^ and Trotter^^ extended Szekeres'

results to Z[x, y]. The canonical bases, thus formed, have the following important property:

Each ideal M has a unique basis T{M) so that the ideals Mi and M2 are equal if and only if

T{M\) = T{M2)- However, there was no algorithm that would compute such a canonical basis

for an ideal M = (M) from a finite system of generators M of M. Such an algorithm would

actually solve our ideal membership problem, since A £ M if and only if (M U {A}) = (M). In

1978, Sims^^ introduced a simple algorithm from which a canonical basis of Szekres and Trotter

could be obtained easily. Subsequently, Christine Ayoub^® has generalized the ideas in Sim's

algorithm to compute a canonical basis for an ideal in Z[xi, 12 » • • 1 ^n]-

In a related development, several researchers have investigated the detachability property of

Z[xi, X2, .

.

., ^n] (a notion first introduced by Richman^^). A ring R is said to be detachable, if it

allows an effective procedure to decide whether an element f E R belongs to an ideal I C R. That

the ring Z[xi, X2, . . ., x„] is detachable has been established by several authors (Simmons'^^ in

1970, Richman^^ in 1974 and Seidenberg^^ in 1974). Actually, Simmons' procedure to determine

if a polynomial A 6 Z[a:i, 3:27 • •> ^n] is in the ideal Ai generated by Mi, M2, .

.

., M„, proceeds

via two semi-decision procedures: the first terminates ii A G Ai and the second terminates if

A^M.
The third development in this direction comes from an attempt to generalize Buchberger's

Let

.{max{|(9i|,...,|e.| :{«!,...,«.) €0}}, if # 0;

otherwise.\ -00,

Since an a priori knowledge of N' provides a decision procedure for the membership problem (using brute-force

search) as well as an upper bound on the number of steps (for instance one can safely choose TV = (2f)*"'^ '
),

a solution to the problem of estimating A'' also provides a solution to the ideal membership problem. The problem
in this form seems to have been first posed by D. Lazard in an electronic bulletin board message.

L. Kronecker and K. Hensel. Vorlesungen uber Zahlentbeorie, Leipzig, (1901).

'*G. Szekres. A Canonica] Basis for the Ideals of a Polynomial Domain, American Mathematical Monthly, 59
(1952), pp. 379-386.

'^G. Szekres. Metabelian Groups with Two Generators, in "Proceedings, International Conference Theory of

Groups (Canberra, 1965)," Gordon and Breach, (1967), pp. 323-346.

"^P.G. Trotter. Ideals in Z[x, y], Acta Math. Acad. Sci. Hungar, 32:12, (1978), pp. 63-73.

'^C. Sims. Tile Role of Algorithms in the Teaching of Algebra, in "Topics in Algebra," (M.F. Newman, Ed.),

Springer-Verlag Lecture Notes in Mathematics, 697, Canberra: Proc 1978, Springer-Verlag, New York, Berlin,

(1978), pp. 95-107.

'^Christine W. Ayoub. On Constructing Bases for Ideals in Polynomial Rings over the Integers, Journal of

Number Theory, 17, (1983), pp. 204-225.

'^F. Richman. Constructive Aspects of Noetherian Rings, Proc. American Mathematical Society, 41:2, (1974),

pp. 436-441.

^°H. Simmons. Tie Solution of a Decision Problems for Several Classes of Rings, Pacific Journal of Mathematics,

34 (1970), pp. 547-557.

^'F. Richman. Constructive Aspects of Noetherian Rings, Proc. American Mathematical Society, 41:2, (1974),

pp. 436-441.

^^A. Seidenberg. What is Noetherian?, Rend. Sem. Mat. Fis. Milano, 44 (1974), pp. 55-61.
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algorithm for computing Grobner basis of an ideal. The algorithm we present in these notes

shares many ideas from Buchberger-Grobner theory and could be classified to belong to this

line development. In the original theory developed by Buchberger^'', he studied the bases for

ideals in A'[zi, X2, .

.

., Xn], where K is a field. His original motivation was to study the quotient

ring K[x\, x^, -, Xn]/J, for some zero-dimensional ideal J. However, it has become quite

apparent that the idea of a Grobner basis of an ideal, an important concept in Bucheberger's

theory, has many more applications than originally anticipated; in particular, one can provide an

effective procedure to determine ideal membership in K[x\, 12, • • •, Xn] using a Grobner basis.

Several researchers (Zacharias^'* in 1978, Kandri-Rody and Kapur^^ in 1984, Lankford'^^ in 1986)

have generalized the concept of Grobner basis for other commutative polynomial rings including

Z[xi, X2,

.

., Xn] (as a special case of polynomial rings over an Euclidean domain). One of the

authors^^ has investigated the characterization of the rings (termed, strongly-computable rings)

over which such generalized Grobner bases can be computed. Subsequently, we shall use many of

the ideas used in these characterizations. As an immediate consequence of these generadizations,

we also have effective procedures to determine if a polynomial A £ Z[ii, X2, . . ., Xn] is in the

ideal A1 generated by Mi, M2, . . ., M^.

However, while it is known that all these procedures for the ideal membership problem are

effective (i.e., they eventually terminate), there has been no analysis of the time complexity for

these algorithms. Thus, at the current state of knowledge, one is unable to provide an a priori

bound on the number of steps any of these algorithms may take on a particular input. Still worse,

the effectivity of these procedures can be shown using only non-constructive arguments, e.g.,

Dickson's Lemma, Hilbert's Basis Theorem or by law of excluded middle (Simmons' arguments
depend on the assertion that either A £ M or A ^ M). There have been many attempts to

obtain a precise complexity of Buchberger's algorithm, but only in case of A"[ari, I2, • • •, ^n]
(where K is a field) the bounds are known. (In this case, there are fairly sharp upper and lower

bounds^*.) A noteworthy attempt in this direction is due to Volker Weispfenning^^. Using the

Bruno Buchberger. Ein AJgonthmus zum AufRnden der Basiseletnente des Restclassenringes nach einetn

nuiJdi'mensionaien Polynomideid, Ph.D. Thesis, University of Innsbruck, Austria, (1965).

G. Zacharias. GeneraJized Grobner Bases in Commutative Polynomial Rings, B.Sc. Thesis, MIT, Cambridge
(1978).

A. Kandry-Rodi and D. Kapur. Algorithms [or Computing Grobner Bases of Polynomial Ideals over Various
Euclidean Rings, Lecture Notes in Computer Science, 174 (1984), EUROSAM 84. International Symposium on
Symbolic and Algebraic Computation, Cambridge, England, pp. 195-208.

Dallas Lankford. Generalized Grobner Bases: Theory and Applications, Technical Report, Louisiana Tech
University, (1986).

^^Bud Mishra. Algorithmic Algebra, To be published by Springer- Verlag, New York, (1992).

D. Bayer and M. Stillman. On the Complexity of Computing Syzygies, Journal of Symbolic Computation, 6
(1988), pp. 135-147.

Thomas William Dube. Quantitative Analysis Problems in Computer Algebra: Grobner Bases and the NuU-
stellensatz, Ph.D. Thesis, Courant Institute of Mathematical Sciences, .New York University, (1989).

D. Lazard. Grobner Bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations. Lecture

Notes in Computer Science, 162 (1983), Springer- Verlag, pp. 146-157.

E.W. Mayr and A.R. Meyer. The Complexity of the Word Problems for Commutative Semigroups and Poly-

nomial Ideals, Advances in Mathematics, 46 (1982), pp. 305-329.

C.K. Yap. A New Lower Bound Construction for Commutative Thue Systems with Applications, Journal of

Symbolic Computation, 12 (1991), pp. 1-27.

^^ Volker Weispfenning. Some Bounds for the Construction of Grobner Bases, Preprint, Mathematisches Institut
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compactness theorem of first-order logic, he has shown the existence of recursive bounds for

the Grobner bases computation in the polynomial rings over a field, polynomial rings over a

commutative regular ring and non-commutative polynomial rings of solvable type over a field.

Unfortunately, his techniques do not apply to polynomial rings over Z, and even if they did,

the proof method would only provide a non-constructive argument as to the existence of such a

bound.

Note added in proof: Recently, G. Moreno Socias has provided bounds similar to ours, but

for the ring of polynomials over a field. The proof techniques are quite different from ours

and are interesting on their own rights. Also, since the Moreno Socias' proofs are based on

Macaulay's theorem, they can be considered constructive.

In these notes, we will first discuss an algorithm to solve the ideal membership problem, and
then provide an upper bound on the number of steps it takes before terminating. The algorithm

is quite similar to the Buchberger's algorithm for computing Grobner bases. Additionally, we
present some applications of our techniques to provide further bounds for a few related problems;

in particular, our result yields an effective Hilbert's Basis Theorem for Z[a;i, X2, .

.

., x„].

2. Our Approach

In this section, we present an algorithm for the ideal membership problem. Our algorithm

is similar to Buchberger's and Ayoub's algorithms in spirit. However, the main distinction is in

the manner it deals with the reduction process. Each reduction step uses a "division" process

very much like Buchberger's original algorithm for K[xi, x^, .

.

., Xn] (K = a field) and shares

some of the ideas proposed by Kronecker himself. In all other aspects, the algorithm is rather

derivative in nature and is based on existing well-known concepts.

Let us assume a fixed but arbitrary order on the variables: xi > X2 > • > a;„. Let the

ordering on the variables induce the lexicographic ordering on the power products. Thus

-ai -012
. . .

a„ ^ 01 02
. . . 0n

lex

if the first non-zero entry of the n-tuple

(ai, a2, ..., a„) -(/?!, /32, ..., /3„)

is positive. Note that the lexicographic ordering is a well-ordering"'''.

Now consider an ideal M C Z[ii, X2, . . ., x„] generated by a finite set M = {Mi, A/2,

. . ., M„} C Z[ii, X2, . . ., x„]. Let A e Zfxi, 12, • • •, a:„] be a multivariate polynomial with
integer coefficients, whose terms are ordered according to the lexicographic ordering, with the

biggest term occurring first. Following the usual terminology, we will denote the leading power
product (or head term), leading coefficient (or head coefficient) and leading monomial (or head
monomial) of A by Hterm(i4), Hcoef(yl) and Hmono(^), respectively. Thus,

Hmono(^) = Hcoef(yl) • Hterm(A), where Hcoef(^) e Z.

der Universitat, Heidelberg, Germany, (1987).

^°It is possible to carry out the subsequent arguments mutatis mutandis with other term or admissible orderings.

However, in order to keep our exposition simple, we have chosen to confine our discussions to the lexicograpluc

ordering.
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We also write, A = }lmoao(A) + Tail(>l).

2.1 Head Reduction and £-Bases

Definition 2.2 (Head Reduction by M,) If Hinono(Af,) divides Hmono(/l) and

Hmono(M,)

Hmono(i4) „.,,,, ^ „ ... .^
^ '^-Tail(M,) + Tail(A),

Hmono(Mi)

then we say that A/,- reduces A to A' and we denote this by the expression A —'-* A'. D

Note that if A-^A' then

Hmono(Ai,)

We should also note that

Hterni(yl) > Hterm(«.M,), and Hterm(4) > Hterm(/l').
lex lex

We also write A—> A' if A—'* A' for some M, € M. Finally, we write A—> A' if

a2^a,:^...^a,^a',

and A' cannot be reduced any further by M. Note that the A' obtained by the above process

depends on the choice of the M,'s at each step of the reduction. It is thus possible that A^ A',

A^ A" and A' 7^ A".

Following simple observations are now in order:

1. The length of the sequence of reductions is necessarily finite, since the lexicographic or-

dering on the head monomials is a well-ordering.

2. We call an irreducible A' obtained from >1 by a sequence of reductions, as above, a normal

form of A with respect to M, and is not necessarily unique. We denote the set of normal
forms of A by

NFm(^) = {A':A-^^'}^0.

3. It is also evident that A—> A' implies that A - A' £ M, and

A = 0iMi + OiAh + + O^M, + A',

where Hterm(A) > Hterm(^,A/,), for all i, and Hterm(A) > Hterm(A').
lex le«
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4. In particular, A^O (i.e. G NFm(^)) implies that A e M.

Definition 2.3 (Property (E)) A set of generators M = {Mi, M2, ., Mu} of the ideal M
has property {E) if

AeM O A^O.

In this case, we say that M is an E -basis of the ideal A1. D

Note that the property (E) is equivalent to the following seemingly stronger condition:

AeM ^ NFm(A) = {0}.

If, in fact, our claim were not true then there would he an A £ M\ {0}, and a choice of reduction

sequence such that A—> A' / 0. But a,s A' = A - (A - A') G M, A', itself would be reducible

by some M, G M.
Thus the property (E) provides an effective procedure to solve ideal membership problem.

Assume that the set of generators {Mi, . . ., M^} satisfies the property {E); reduce A with respect

to some choice of reduction sequence: A—> A', if A' = then AeM; otherwise, A ^ M.
Property {E) is equivalent to property (^1) which says that for every A ^ in M, there is

an Mi such that Hmono(M,) divides Hmono(>l). It is trivial to see that {E) implies (£^1); to see

the converse, it suffices to observe that {E\) implies that every non-zero A £ M. is reducible.

2.2 Head Monomial Ideal, G-Basis and the Property (SYZ)

Before we present an algorithm to compute an £-basis of an ideal in Z[a;i, X2, . . ., Xn\., we relate

it to some of the well known concepts, introduced in the context of the computation of a Grobner
bases. We begin with a few definitions:

Definition 2.4 (Head Monomial Ideal) Given a subset 5 C Z[ii, X2, . . ., Xn\ we call the

ideal generated by all the head monomials of elements in S the head monomial ideal of S and

denote it Head(5). D

Note that 5 is not required to be a finite set. The idea of a Grobner basis is expressed

these terms by what we shall call property (G).

m

Definition 2.5 (Property (G)) A set of generators M = {Mi, M2, . . ., M^} of the ideal M
has property (G) if

Head(7\/, M^) = Head(A^).3i

In this case, we say that M is a G-basis of the ideal A4. D

^'By an abuse of notation, we write Head(A/i A/f), instead of Head({A/i, . . ., M^]).
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Notice that we always have Head(A/i, A/2, . . ., M^) C Head(AI), since {Mi, Mj, . . ., M„} C

A1. On the other hand if {Mi, A/2, . . ., M^] has property (E) it follows that it also has

property (-CI), whence for every A E Ai there is an M, such that Hmono(A/,) divides Hmono( A)

and therefore Hmono(A) £ Head(A/i, Af2, . . ., Af^) and it follows that Head(A/i, A/2, . . .,

A/^) = Head(AI). Thus property (E) implies property (G). However, the converse is not always

true. Consider the following trivial example. Let M = (x^ + 1), Afi = 2x^ + 2, Af2 = 3i^ + 3.

Then M = {Mu A/2) and

Head(AI) = (i^) = {2x^,3x^) = Head(Afi, A/j),

and we see that {A/i, Af2} has property (G) but it does not have property (E) since i^ + 1 is

reducible by neither A/i nor A/2 even though ar^ + 1 is in A1.

Next, we consider the property (SYZ), which is equivalent to property (G) and is a useful aid

in the computation.

Definition 2.6 (S-Polynomial) Let A/, and Mj be two distinct polynomials in the idecJ Ai.

Then we define the S-polynomial of Mi and Mj (denoted, S{Mi,Mj)) as follows:

SiMi,Mj) = ^^^777- A/, - ^^VtFT^^J'Hmono(M,) Hmono(A/j) '

where m — LCM{Hmono(M,), Hmono(A/j)}. D

Definition 2.7 (Property (sYz)) A set of generators M = {Mi, . . ., A/^} of the idealM has

property ('SYZJ if for every pair of distinct polynomial Mi, Mj G M, S(A/,, Mj) G M can be

expressed as

siMi, Mj) = eiMi + --- + e^M^,

where Hterm(5(A/,, Mj)) > Hterm(<9,A/i), for all i. D
lex

We recall the following theorem from the Theory of Grobner Bases^^, without proof.

Theorem 2.1 Let M be an ideal in Z[xi, . . ., a;„], and

M = {a/i,A/2 A/^} CM,

a subset of M. Then the following two statements are equivalent:

1. Head(Afi, A/2 A/^) = Head(vM).

2. {Ml, A/2, . . ., A/j,) = M, and M has the property fsYZJ. D

Next consider a more useful, and seemingly weaker condition (SYZl); a set of generators

M = {Ml, . . ., A/„} of the ideal M has property (SYZl) if for every pair of distinct polynomial

Mi, Mj 6 M,

5(.U.,A/,)-^0.

Algoiithmic Algebra.
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Obviously, (sYZl) implies (SYz), and by the preceding theorem, also the property (G).

Note that if {Mi, M2, . ., M^} has property (E) then, since for every pair of distinct

polynomials M^, Mj 6 M, S{Mi,Mj) G M, we have

5(M.-,Mj)^0,

and (E) implies (sYZl). But, the converse does not always hold. Consider our old example:

M = {x^ + 1), Ml =2x2 + 2 and M2 = Si^ + 3. Then M = (Mi, M2) and 5(Mi,M2) = 0. We
conclude that {Mi, M2} has property (sYZl); but it does not have property (E).

Thus, although we can verify if a set of generators has property (SYZl) by means of a

computable test, such a test is not sufficient for property (E). In some sense, the problem with

property (i^) is illustrated quite well by the above trivial example, and can be fixed equally

trivially, using the following machinery.

2.3 The <if Expansion

Let A4 be an ideal and M = {Mi, M2, . . ., M,,} be a subset of polynomials in Z[xi, X2, ., Xn]-

For every non-empty subset M' = {M^j , . . ., M,^} C M, we let

q = gcd{Hcoef(M., ),..., Hcoef(M.j}

= aiHcoef(Mij ) + (- a^Hcoef(M,-^),

where q, Ci, . . ., a^ 6 Z, and we let,

T = LCM|Hterm(Mii ),..., Hterm(Mi^)}

whence,

'-'' = ''' HtermCM,)"'"""^^^" ^ +
' '

'

^^ "^
HtermV..)

"""""^^'"^

and clearly q • tt e Head(Mi, . . ., M„). Thus, for every such M' we define

^^^'^ = "^
HtermV.:) ''" "^

' '

"

+ "^ HtermV.J^^

'

Clearly, V(M') G (Mi, . . ., M^) and Hmono(V'(M')) = 9 • tt e Head(Mi, . . ., M^). This leads us

to define the ^ expansion of M to be

^(M) = *({Mi,...,M,})

= {Mi,...,M,} U {V'(M'):0CM'CM

& (VI < i < v) [Hmono(M,) does not divide Hmono(^(M'))]|

= {Pi,...,Pa} = P,

where we have removed duplicates or multiples with respect to the head monomials. Moreover,

it is clear that

Head(Mi,...,M^) = Head(Pi, . . .,Pa), and

(Mi,...,M,) = (Pi,..., Pa).
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Definition 2.8 (Property (*)) A set {Mi, . . ., M^} has property {'9) if it is closed under the

^ expansion, i.e.

*(M) = M. n

Lemma 2.2 Let M = {M\, . . ., M^} be a set of generators of Ai. If the set M satisfies the

property (E) then it also satisfies the property (^ ).

PROOF.

Assume to the contrary, i.e. M satisfies property {E) but not {^). Then there is an element

A G *(M) \ M C A1 such that Hmono(yl) is not divisible by any Hmono(M,), where M, G M.
But then this directly contradicts the property (£'1). D

We note that '4'(M) has property ('5), regardless of what M is considered, since '^('^(M)) =
^(M)''^. We also remark that if the set M is finite then its expansion is finite, and effectively

constructible (via Euclid's Algorithm; see appendix 1).

2.4 Characterization of an £^-Basis

Theorem 2.3 Let M = {M\, . . ., M^} be a set of generators of M.

1. If M satisfies the property (G) then *(M) is a set of generators of M satisfying the

property (E).

2. IfM. satisfies the property ('sYZlj then $(M) is a set of generators ofM satisfying the

property (E).

PROOF.

"Note that

(V0 C p' c *(M)) (3M' C M) [Hmono(V'(P')) = Hrnono(V'(M'))].

A suitable choice for M' is as follows:

M' = ^P' n m) u |J{m" : ^(M") e P' \ m|.

Thus,

HcoefCV-CM')) = Hcoef(V'(P')) and

Hterm(,A(M')) = Hterm(V'(P')),

i.e. Hmono(V'(M')) = Hmono(V'(P')). Hence,

*(*(M))\*(M) = |v(P'):0$p'c*(M)

(VM' C M) [Hmono(V'(M')) does not divide Hmono(V'(P'))]}
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(SYZl)

(E) < >{El)

(SYZ) o (G)
(«)

(G) & ($) (SYZl) & ($)

Figure 1: RELATIONS among the Properties.

(1) Since M C '^(M) C M, evidently, ^(M) is a set of generators of A^. Let A G M. As M
satisfies property (G), it follows that Hmono(A) G Head(Mi, . . ., M,,), and it can be expressed

as follows:

Hmono(j4) = ai7riHmono(M,, ) + h a^7r^Hmono(Mi^)

where Oj G Z \ {0} & Hterm(y4) = ;rjHterm(Mi_,)

= [ai Hcoef(A/i, ) + • + a^Hcoef(M,,.)] •

tt' • LCM{Hterm(M., ),..., Hterm( A/.j}
= {q'-q){n'-n).

Now, if we consider the subset M' = {A/,, , . . ., Af,^}, then Hmono(V'(M')) = q ir, and thus

there must be a polynomial in *(M), whose head monomial divides Hmono(yl).

(2) This is an immediate consequence of the fact that the property (sYZl) implies (G). D

Corollary 2.4 Let M = {Afi, . . ., A/^} be a set of generators ofM. Then

1. The set M satisfies the properties (G) and (^) if and only if it satisfies the property (E).
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2. The set M satisfies the properties fSYZlj and (^) if and only if it satisfies the property

(E).

PROOF.

Both the assertions follow from the previous theorem and the facts that [E) implies (G), (sYZl)

and ($) (see lemma 2.2 and the related remarks). D

2.5 The Algorithm

Now, we are ready to present our algorithm to compute an £'-basis for an ideal. Recall, from

the discussion earlier, that this would provide us with an effective procedure to decide the ideal

membership problem:

f-Basis Algorithm:

Input: M C Z[xi, . . ., x„],

M = finite.

Output: P CZ[xi, ..., x„],

(P) = (M), and P satisfies the property (£").

P := M; P := *(P);

Pairs := {{Mi,Mj) : Mi,Mj eP k Mi^ Mj);

while Pairs ^ loop

Choose {Mi,AIj}, any pair in Pairs;

Pairs := Pairs \{{A/i, M^}};

Compute a normal form P of S(Mi, Mj) with respect to some
choice of sequence of reductions modulo P;

P = NFp(5(A/.,M,));
\{ P^O then

P := PU{P}; P := *(P);

Pairs := {{M,-,Mj} : Mi,Mj eP k Mi^Mj);
end if

;

end loop
;

return P;

end £'-Basis Algorithm. D

Consider a sequence of values assumed by the variable P during an execution of the £'-Basis

Algorithm, say Pi = M, P2, P3, . . ., P2N'-i^ P2N' = Pi (if we may assume that the algorithm

terminates), where:

1. P2. = '^(P2,-i), (i=l,..., iV'), and

2. P2,-i-i = P2i U {P21} {i = 1, . . ., TV' - 1), P2i G (P2.), and P2. is not reducible with respect

to P2,.

We make the following observations:

• For i = 1, . ., N', (P2i) = (P2i-i)' (see the discussion in the subsection 2.3). For i = 1,

. . ., iV' - 1, (P2.+1) = (P2.), since P2. G (P2.). Thus, (P) = (M).
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• Clearly, P27V' = P satisfies the property (SYZl) (otherwise, it would violate the assumption

that the algorithm terminates). Thus, by theorem 2.3, '^(P) satisfies the property {E).

But, since P = P2N' = *(P2N'-i)> we have

*(P) = ^{^iP2N'-l)) = *(P2N'-i) = P,

and P itself satisfies property {E).

In summary:

Theorem 2.5 (Weak Correctness of the £-Basis Algorithm) Given a finite set M C Zfxi,

. . ., Xn], the algorithm £-Basis Algorithm correctly produces an E-basis of the ideal M = (M),

when it terminates. D

Thus, for our purpose, it suffices to show that the algorithm terminates after some finite

number N steps. The following observation will be useful in the subsequent arguments:

Note for all i = 1, . . ., A'^' - 1, Hmono(/2i) is not divisible by the Hmono(Mj)'s, for all

^j G Pai- Thus Hmono(P2i) ^ Head(P2,-i), since otherwise by the arguments in subsection 2.3

Hmono(P'2i) would be divisible by the head monomial of some polynomial in $(P2t-i) = P2«-

Thus, for all i = 1, . . .,

Head(P2i_i) C Head(P2.+i).

Thus, if we can show that such an ascending chain of monomial ideals is of some bounded

length^"* then we can obtain an upper bound on the number of steps the algorithm takes before

termination.

It is well known that given an arbitrary ascending chain of monomial ideals it is not possible

to bound the length of the chain simply by the size of the basis for the first ideal; for example,

the following ascending chain of monomial ideals can be of arbitrary length, depending on the

parameter P and independent of the size of the basis for the first monomial ideal:

(x2y2)C(xj/^)C(:,j,^-i)C(xy^-2)C...

However, we can circumvent this problem, since we have additional informations on the sizes of

the bases of all the monomial ideals in the chain.

Using the bounds from the appendices 1 and 2, we see that, if we know that Head(P2,_i)

has a monomial basis with coeflScients and degrees bounded respectively by C and D, then

Head(P2,+i) has a monomial basis, whose coefficients and degrees are bounded respectively by

(C-)^^ < 2^
, and

2(21) +1)^ < 2^

Also, if Head(P2,-i) has a monomial basis with A generators then Head(P2,+i) has a monomial

basis with at most 2'^ generators.

^^Since Z is Noetherian, by Hilbert's Ascending Chciin Condition, one can show that such a chain of idecds must

be of finite length. However, this argument is non-constructive in nature and suffers from the problem alluded to

in the introductory section.
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Later on in the paper we shall use the following notation

2 T^'^ (x) to denote 2^'
? ^

and call it the i^^ tower function. We also write 2 T^'^ for 2 T^'^ (!)

Thus, we see that, if we start with a system of i/ polynomials with coefficients and degrees

bounded by c and d respectively, then the monomial ideal Head(P2i+i) has a basis with consisting

of at most 2 |(') (v) elements whose degrees and coefficients are both bounded by

2 T^^'^ (majc{c,d,n}) < 2
|{5.+m«x{c,d,n})

In particular,

Theorem 2.6 Let N' bound the length of any ascending chain of monomial ideals

where Mi has a monomial basis with coefficients and degrees bound of 2
j(5«+niax{c,d,n}) j/jg^

our algorithm to compute an E-basis of a set of u polynomials M C Z[a;i, . . ., a;„] of coefficients

and degrees bounds of c and d, respectively, uses no more than N arithmetic steps, where

N < 2 t(5(A^'+l)+inax{i/,c,(i,n})
_

|--|

Henceforth we shall concentrate on obtaining the bound N' for the length of an eiscending

chain of monomial ideals satisfying the conditions of the preceding theorem. In fact, we will do

little more: Consider an ascending chain of monomial ideals

Mi^M2^---'^Mi<^---,

where Mi has a monomial basis with coefficients and degrees bound of f(i + k) and / is a

monotonically increasing function; we shall derive a bound on the length of the chain of ideals. Of

course, the bound we derive will depend on the function /. From such a general bound, obtaining

the bounds N and A'^' is a trivial matter, once we identify / with the function 2
|(5i+max{c,ci,n})

However, the bounds we shall derive are going to be rather crude and will be given in terms of

a class of rapidly growing (but primitive recursive) functions. In the following two sections, we

shall develop the necessary tools.



jg A Solution to Kronecker's Problem

3. Rapidly Growing Functions

In this section, we start with an explicit description of certain provably recursive functions

due to S.S. Wainer^^. The Wainer characterization itself can be derived from a previous char-

acterization due to Kreisel in terms ordinal recursion of order < £o, and has lately found many

applications in logic, e.g. Paris-Harrington Theorem^^ (a variant of Finite Ramsey Theorem)

and Friedman's Finite Form (FFF) of Krushkal's Theorem. However, for our purpose, we only

need the initial primitive recursive segment of a slight variant of the Wainer Hierarchy, which

we describe below.

Definition 3.9 (Wainer Hierarchy) Let {Fa} (0 < a < £o) be a family of functions, defined

as follows:

Fo{x) = x + 1

Fo,+i{x) = F^'^'^^\x), if a is a successor ordinal;

(G'^'"hs the m-fold application of G)

Faix) = max(Fj^(a:)), if a is a limit ordinal.
k<x

{jk is the k*'^ element in a canonical fundamental sequence

converging to a.) D

Thus at each successive stage, we obtain the next rapidly growing function by diagonalizing

over the current function by x-fold applications, and at limits, we obtain a more rapidly growing

function by diagonalizing over the family of functions indexed by the elements of a sequence

converging to the limit. It can be shown that these functions are all monotonically increasing

and that Fp is more rapidly growing than Fa if and only if q < /?. It can also be shown that Fi,

F2, -F3, etc. are all primitive recursive and that F^ has the same order of growth as Ackermann's

function. (Thus F^ is an example of a recursive function that is not primitive recursive.)

Definition 3.10 Consider a monotonicaUy increasing function^^ /:N — N. /is said to be in

Wn (i.e. in the n*^ level of Wainer hierarchy, if f{x) < F„{x) almost everywhere (i.e. for all but

finitely many x). D

Example: The first few functions have the following approximate order of growth:

Fo(x)
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These approximate equalities are quite "tight;" for instance, for x sufficiently large ,

2 T^'^'^a:) < F3(x) < 2 \(^+^^ {x).

We now state a few elementary facts about Wainer hierarchy. Let /, g and h be monotonically

increasing functions.

Fact 1:

geW, ^ g e W,+k, for all A; G N.

Thus, a function in the i'^ level of the hierarchy is also in the higher levels of the hierarchy.

Fact 2:

g,h£Wi => g + h e Wi^i and g h £ Wi+i.

In general, any arithmetic combination of a finite (fixed) number of functions in the i'^

level of the hierarchy is in the next level of the hierarchy.

Fact 3: Let / € W, {i > 1). Let 5 be a function defined recursively in terms of / zis follows:

</(0) = k, fc = a constant

gix) = /(ff(x-l)), ifi>0.

Then g G V^,+i.

Note that, for x sufficiently large

gix) = f(^Hk) < f^^Hx) < fI'\x) < fI'^'\x) = F.+,(x).

Fact 4:

g,hEWi =^ goheWi+i,

where o denotes functional composition.

Note that, for x sufficiently large

g{hix)) < g(F,ix)) < fI^\x) < f!^^'\x) < F.+i(x).

In general, any functional composition of a finite (fixed) number of functions in the t'^

level of the hierarchy is in the next level of the hierarchy.

In particular, if ^ 6 Wi {i > 1) then 2^ 6 VT.+i and 2 f'*"' 9 6 ^Vi+i, assuming k is a. fixed

constant.
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4. Ascending Chain of Monomial Ideals

In order to prove the required bounds, we start with some simple algebraic preliminaries.

Our proof techniques will be closely based on a technique, first used by A. Seidenberg^^.

We start by considering the following rings of multivariate polynomials over the integers and

rationals:
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Let M denote a minimal monomial basis ofM. Then A1,+i has a monomial basis containing

M, and with sizes bounded by f{i + k).

PROOF.

Let

. . .
,

b,x\-...x]'^---x::'^,

. . .
,

bex['^.--xy'---x',"'
}

be a finite monomial basis of Mi. (The finiteness follows from the bounds on sizes: 6,, r,j <
f{i + k).) Without loss of generality, we may assume that all the 6,'s are positive. Also note

that

/ t'"i 1 ... T-'!'-' . . . T-''!" -r*"'! . . . r'i'J . . . T*"'" t''" ... t'"'-' . . . T*"'" \
\ -^1 ^j ^n >•••> ^1 ^j ^n '

•••' ^1 ^j ^n /

is a basis for M\ and

\ "l ^1 -"^j-l •"'j+l ^n ' ••1

o,Xi Xj_i i^^i !„ , ..., OfXj •••Xj.i Xj^i •••x„
j

is a basis for yV(,- .

Let M^^i be a minimal monomial basis of Mi+i containing M,. Such a basis exists since

M, U M,+i is a basis of M,+i containing M,. Let a Xj* • • •i^-' • • -x^" be a monomial in MJ ,

j

but not Mi. (Again assume that a > 0.)

First, assume to the contrary, i.e. p-j > f{i + k). Then

a=rr---x^^iVx^^;V---x^„"GA^a=MP.

Thus, we can express the monomial a xj' • -x^i'j' x^^Y " -^n" ^ ^ linear combination of the

elements of the basis of A^^ :

a x^' •x^-'"' x''-'+' ...xP"

e

t=i

where g, G Z[xi, . . ., x}, . . ., Xn]. But since r,j < f{i + k), pj > r,_, and we can express the

monomial a Xj" -x^' x^" as a linear combinations of the elements of M,:

axl' x^/ xl"

— 2^ <7,^xi, . . .,Xj_i,Xj+i . . .,Xnj • x^ • Oi 2:j ••Xj_j Xj x^^i •x^
t= l
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thus contradicting the hypothesis that a x^^ x'^' -x^" ^ Mi-
Now assume that a > f{i + k). Then

Hence, M, contains an element of the form

u, x^ • • •a-n >

such that 6, < a (since 6, < f(i + k)), r,i < pi, . . ., r,n < Pn and a is not divisible by 6^. Let

M"^i be a new set of monomials obtained from MJ^j after replacing the monomial a ij' • • -x^"

by

= a ar?' • -arP" - 1^'-""
• • -xP^-^-Cti x\'' ••!;•").

But this yields a monomial basis M"^j of A^,+i containing M, which contradicts the minimality

of M(. This completes the proof of the lemma. D

Corollary 4.8 Assume that

Mr c Mi+i S • • • S Mk-i SiMk^-'-'^Me

is an ascending chain of monomial ideals in Z[xi, . . ., a:„], with monomial bases of sizes bounded

by the function values:

f{i + k) < /(i + 1 + k) < • • • < /(A; - 1 + k) < /(^' + k) < • • • < /(£ + k).

Further assume that for all < j < n,

>lp) = m\!^, = • = Mi'l, = Mi'^ = = M['\

Then there is a monomial in M^ \ Mfc_i whose sizes are bounded by f{i -\- k). Thus

PROOF.

First note that A4k has a monomial basis Mjt such that

and A^fc 2 ^Ai and for all < j < n

M^^ = M^p.

By the previous lemma, Mk has a monomial basis M;t whose sizes are bounded by f{i + k). In

particular.

(3 monomials mi+i , . .
.

, m^, . .
.

, m,n

\mk e Mfc \ Mfc_i and \mk\ < f{i + k)] .
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Thus we can always find {£ — i) distinct monomials whose sizes are bounded by f{i + /c). But

then the number of such monomials (i.e. [f{i + k) + l]""*"^) provides a simple upper bound on

i-i. a

Now, proceeding in a manner similar to the one outlined in this section, and only considering

the ring homomorphisms

n;- : Q[a:i,...,x„]-.Q[xi,...,a:„]/(x,-l)^Q[ii,...,i;,...,x„]

: /(ii,...,x„) t-^ /(xi,...,a;„)x_,=i, 1 < j < n,

we can also prove the following:

Corollary 4.9 Assume that

Mi C Mi+i S • • S Mk-i ^MkS---^M(

is an ascending chain of monomial ideals in Q[ii, . . ., x„], with monomial bases of sizes bounded
by the function values:

f{i + k) < fii + 1 + k) < < f{k - I + k) < f{k + k) < < fil + k).

Further assume that for all 1 < j < n,

M\'^ = M\i, = • = Mi'l, = m['^ = = m['K

Then there is a monomial in Mk \ Mfc_i whose sizes are bounded by f{i + k). Thus

^<i + [/(t + Ac) + i]". n

Lemma 4.10 Assume that

M, c M,+i c . .
.
c Mk-i '^Mk'^--CMe

is an ascending chain of ideals in Z, with bases of sizes bounded by the function values:

f{i + k)< f{i-\-l + K)<---< f{k-l + K)< f(k + «)<•••</(£ + k).

Then

i<i + [f(i + k) + 1]

PROOF.

Since Z is a PID, each A4k is a principal ideal generated by a single element whose size is strictly

bounded by the bound on the size of the bases of A^,. Thus we can always find {£ — i) distinct

integers whose sizes are bounded by f{i + k). This provides the required bound on i. D
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Lemma 4.11 Assume that

Mi S Mi+i S • • • c Mk-i SMk'^---SMe

is an ascending chain of ideals in Q[a;i], with monomial bases of sizes bounded by the function

values:

fii + K)<f(i+l + K)<---<f{k-l + K)<fik + K)<---<f{£ + k).

Then

e<i + [fii + k) + 1]

PROOF.

Since Q[xi] is a PID, each Mk is a principal ideal generated by a single element whose size is

strictly bounded by the bound on the size of the bases of M;. Thus we can always find {i - i)

distinct powers of xi whose sizes are bounded by f{i + k). This again provides the required

bound on £. D

In a manner first proposed by A. Seidenberg, we shall next consider a set of ascending (not

necessarily strict) chains of monomial ideals, where each chain contains ideals aU in Z[xi, . . .,

Xn] or all in Q[xi, . . ., x„, Xn+i]- Furthermore, we shall assume that all the chains are of same

length i, the i"* monomial ideal in each chain has a monomial basis whose sizes are bounded by

the function value /(i + k) < FA'(i + K) and that for each i < L, there is a chain {f^ chain) in the

set for which Ml $ A^'+i- Here, the function Fk is the A''^ function in the Wainer hierarchy

and K > 2. We write such a set as follows:

M\ C Ml C C Mi
Ml C Ml C C Ml

M\ C M\ Q Q Ml

-Mr ^ A^^ C ••• C Ml

and denote it by S(n,m,/v'), where n is its order, K is its order of growth, m is its width and

L is its length. We would like to obtain a bound on the length Z, as a function m, n, K and k.

While each chain may not be strictly ciscending, we refer to the set of chains as being strictly

ascending, as we require that for each i < L, there is a chain (t*-^ chciin) in the set for which

MlCMU,.
It is also obvious that for each chain

M\ CM'2^---Mi

we can construct at most (n + 1) chains involving smaller order by taking the extended ideals
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under the projection ring homomorphisms:
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Now it's easy to see that the order of growth K' of the set S'(n - 1, m{n + 1), A'') is given

by the function:

g{j) = f{hS'-'\l) + k) < Fk+z{J + k + n),

and that K' = A' + 3. (Direct consequence of the facts 1, 2 and 3 of the section §3)

Now we claim that the following relation holds between the lengths L and V

L{n,mJ{) < L' (m[fiiL, + k) + If
+i + l)

< L'-{m[9iL') + ir+' + l)

< FK+4iL' + K + n)

= FK+4{L{n- l,m{n + 1), K + 3) + K + n).

Thus by repeated application of the above relation, we see that

L{n, m, K) < FJ^l^^^,{L{0, m{n + 1)", K + 3n) + n • FJ^l^^^.in + n).

Now using the lemmas 4.10 and 4.11, we see that

X(0,m,A^)<m[FK(l) + l].

Thus we obtain the following bound on the length of a set of ascending chain of monomial

ideals, S(n, 1, A"):

X(n, 1, A") < Fa'+4„+2(« + n + 1).

5. Summary of Results

Now summarizing the discussions of the preceding section,

Theorem 5.12 Let L bound the length of any ascending chain of monomial ideals of Z[xi, . . .,

where A4i has a monomial basis with coefficients and degrees bound of Fi^{i + k). Then

X < FA'+4n+2(K+ n + 1). D

Now, note that the function 2 |(5i+max{c,(i,n})<
/:,(t + max{c,<f, n)), and using this fact, we

obtain the following refinement of the main theorem of section §2:

Theorem 5.13 Let N' bound the length of any ascending chain of monomial ideals

where Mi has a monomial basis with coefficients and degrees bound of 2 |(5«+max{c,(f,n})
j'ftcn

N' < F4„+6(max{c, d, n} + 1),
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and our algorithm to compute an E -basis of a set of u polynomials M C Z[ii, . . ., x„] of

coefficients and degrees bounds of c and d, respectively, uses no more than N arithmetic steps,

where

^ < F4n+7imax{i/,c,d,n} + 1).

Also, the resulting E-Basis has its degrees and coefficients bounded by

F4„+7(max{c,d, n}+ 1). D

We note that while these bounds are rather crude, for a fixed n the complexity remains

bounded by a function of input size whose growth rate is bounded by a primitive recursive

function. However, if we consider the complexity a^s a function of n this bound has a growth

rate similar to the Ackermann's function.

Following in a manner similar to the ones in the previous section, we obtain the following

results:

Theorem 5.14 (Kronecker's Problem) Given an idealM — (Mi, M2, • -, M^) C Z[ii, X2,

. . ., Xn] and a polynomial A G T-[x\, x^, -, in]) there is a decision procedure to decide the ideal

membership problem (whether A £ M) which requires no more than following number of steps:

f:j„+8(max{i/, n, \Al |A/i|, . . ., |M^|} + 1).

Also, given A, A', Mi, M2, • • •, M„ € Z[ii, X2, , Xn]> there is a decision procedure to

decide whether A -^ A' mod {Mi, M2, -, M^), which requires no more than following number

of steps:

F4„+8(niax{i/, n, |>l|, \A'\, \Mi\,

.

. ., |M^|} + 1).

Theorem 5.15 (Detachability Problem) Given A, Mi, M2, . . ., M^ € Z[xi, X2, . . ., Xn\,

let

= {(^1, . ..,B,):A = OiMi + • e.M,}.

IfQi^^ then

min{max{|ei|, . .
. ,

\e^\ : {0i, . . .,6,) e 0}} < F4„+8(max{j/, n, \A\, \Mi\, . ..,\M,\] + 1). D

Theorem 5.16 (An Effective Hilbert's Basis Theorem) Let L bound the length of any as-

cending chain of ideals of Z[xi x„]

MiSM29---'^Mi^---,

where Mi has a basis with coefficients and degrees bound of F}^{i). Then

L < /A-+8n+io(" + !)•

PROOF.

Consider the following ascending chain of monomial ideals of Z[a;i, . . ., x„]

Head(A1i)C Head(7V(2) 9 •••C Head(A^,) $ ••
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By the preceding arguments, we know that the

{Hmono(M) : M G E-has\s{Mi)}

is a basis for the head monomial ideal Head(Al,) with degrees and coefficients bounded by

F4„+7(Ja'(z) + 1) < -Fa-+4„+8(0- Thus the length of the ascending chain of head monomial

ideals is bounded by

But since Mi $ Mi+\ implies that Head(A1,) $ Head(7V(,+i), we see that

L < /k+8n+10(" + 1).
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Appendix 1. Expansion Algorithm and the Bounds

In this appendix, we describe a simple aJgorithm to compute V'(M') of a non-empty subset

M' = {M{, .

.

., M'^} C Z[x], X2, .

.

., Xn]- The algorithm is based on a simple generalization of

the classical Euclid's algorithm. Later on, in the appendix, we shall provide somewhat crude

but simple complexity bounds on the number of steps the algorithm takes as well as the

coefficient and degree bounds for the resulting polynomials.

We recall that since Z is an Euclidean Domain, it supports the following

Division Algorithm:

(Vs,<eZ,5/0)(3g,r6Z) t = q-s + r,

{q = quotient, r = remainder),

in which either r = or |r| < |5|. Additionally, if we cissume that \q\ takes the smallest possible

value, then the quotient and the remainder are uniquely determined, and l^] < \t\.

The cdgorithm is now as follows:

Expansion:

Input: M' = {M{, M^, .

.

., M'^].

Output: V(M').

Assume that |Hcoef(A/i')| < |Hcoef(M^)| < < |Hcoef(M;)|;

Insert the following elements into a queue Q;
(u;i,i, . .

.
, wiy, wi) := (i, 0, . .

.
, 0; Hcoef(A/());

{W2.i, ..., W2y, W2) := (0, 1, . .
. , 0; Hcoef(M^));

(u;^,i, . .
. , Wi,^^;w^) := (0, 0, . . ., 1; Hcoef(M^));

while \Q\ > 1 loop

Dequeue the following first two elements of the queue Q:

iwi,i,...,wi^^;wi) and (iy2,i> • • • , 1^2,/*; 1^2);

Let W2 = q Wi + r;

Enqueue (u'lj, . .
.

, ifi,^; u^i) in the queue Q;
if r ^ then

Enqueue (iV2.\, ,W2,^,,W2) - q (u'2.1, •, "'2,^; ^2);

end if
;

end loop
;

Let n = LCM{Hterm(A/i'),...,Hterm(M;)};

return wii:
Hterm (A/,')

end Expansion. D

-Al,'+-+u'i,^
Hterm (A/;)ttK;
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The correctness and termination of the algorithm follows from the following easily verifiable

facts. Assume that at the beginning of each iteration the queue Q contains the following t

{2 <t < ^i) elements

W2 = {w2,l,...,W2y,W2),

m = {wt,i,...,wty,wt).

Then

1. \wi\ < \w2\ < < \wt\ < |Hcoef(M;)|.

2. gcd{ii;i, ...,wt} = gcd{Hcoef(M{), • • • , Hcoef(M;)}.

3. For all j {0 < j < t)

Wj = Wj^i • Hcoef(ilf{) + • • • + «;j> • Hcoef(M^).

Furthermore, if the queue Q = [wi, . . ., Wt] before the main loop and Q' = [w'l, .

.

., w't'] at the

end of the main loop, then

1. |u;i| > \w[\ OT t > t' and at least one of the inequalities is strict;

2. Since |g| < |u>2| < |Hcoef(M;)|,

|<_,|<max{K.,|}-|Hcoef(M;)|.

Thus the algorithm uses at most /x + |Hcoef(Mi')| iterations of the loop, and the the

multipliers, ifij's are bounded by

(|Hcoef(A/;,)|)|H^°«f(^/)l-i.

Thus, if we assume that c and d, respectively, bound the coefficients and degrees (in each

variable) of the polynomials in M' then c'^ and 2d bound the coefficients and degrees of the

polynomials in ^(M'). The algorithm uses at most fp + 4/ic + fj,{d + 1)" arithmetic steps.

In summary.

Theorem 0.17 Let M = {Mi, Mj, . . ., Mi,} be a subset of polynomials in Z[xi, X2, . . ., x„]

such that their coefficients and degrees are bounded respectively by c and d. Then the '9

expansion ofM., ^(M), consisting of at most 2*^ — 1 polynomials, can be computed with

2^(v^ + 4uc+ i^id + 1)") arithmetic steps, and their coefficients and degrees are bounded

respectively by c*^ and 2d. D
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Appendix 2. Reduction Algorithm and the Bounds

In this appendix, we shall provide simple complexity bounds on the number of steps required

by the reduction algorithm as well as the coefficient and degree bounds for the normal form of

the polynomial undergoing the reduction sequence. The techniques employed here were first

used by Mishra and Yap"'^, and later extended by Dube, Mishra and Yap'*°.

Consider a subset M = {Mi, . . ., M^} C 1[xi, 12, • • •, Xn], with respect to which the reduction

is assumed to be carried out. Further, assume that c and d, respectively, bound the coefficients

and degrees (in each variable) of the polynomials in M.
If TT = i^'ij^ • -x^" is an arbitrary power product then we assign it a weight as follows:

VVm(t) = ai{d + l)"-i + Q2(d+ 1)"-^ + • • • + a„(d + 1)°.

Note that

1. If the degrees of a power product tt are bounded by D then its weight Wj^iC''') is

bounded by

f((.+ir-i).

2. Conversely, if the weight a power product tt is bounded by W then

W

w

deg,„(7r) < W.

Thus, the number of distinct power products of weights bounded by W is never bigger

than

(d+ l)n(n-l)/2 •

Consider a polynomial A E Z[a;i, 121 • • -^ ^n] coefficient and degree bounds of C and D
respectively. Let the weight of a multivariate polynomial be defined to be the biggest of the

weights of its power products; that is,

ii A = aiTTi + a2T^2 + 1- fl^""/ then Wm(>1) = max Wm(t,).

''Bud Mishra and Chee Yap. Notes on Grobnei Bases, Information ScicDces, 48, (1989), pp. 219-?'.

^°Thomas Dube, Bud Mishra and Chee Yap. Admissible Oiderings and Bounds for Gtobnei Basis .\ - ' Form

Algorithms, Courant Technical Report 258, (1986), 29pp.
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Note that for every power product tt and M, G M,

WM(7rM,) = >VM(7rHterm(M,)).

Using the above observations, we see that if A—^ A! then

., . HmonofA) ., ,^ / .x ,t / ./x^ = A- r77T-^i> Hterm(A) > Hterm(A'),
Hmono(M,) i«n

and

Wm(.') . ..{wm(^,,Wm(|=H!15(|.m,)}

= max {>Vm(>1), WM(Hmono(^))} = Wm(^)-

Additionally, the coefficients and degrees of A' are bounded respectively by Cc and D + d. But

just from the considerations of weights, we also observe that the degrees of A' are bounded by

yvMiA) = ^{{d+ir-i).
Now, extending the above arguments to a reduction sequence, we see that if

A^A^^...^A,^A\

then

Hterm(A) > Hterm(Ai) > • • • > Hterm(>lj) > Hterm(A'),
lex lex lex lex

and each of them has a weight bounded by Wm(^) ^ ~riid.+ 1)" — 1).
a

Thus the length of the reduction, j
' + 1 is bounded by the number of distinct power products of

weight no larger than yVj^/i{A), i.e.,

; + l<(^ + l)"(d+ir("+^)/^

Furthermore, the coefficients and degrees of A' are bounded, respectively, by

c.,(D/d+ir(rf+ir("-»/^ and (^^Yid+ir-i).

Theorem 0.18 Let M = {Mi, M^, . ., M^} be a subset of polynomials in Z[xi, X2, . . ., x„]

such that their coefficients and degrees are bounded respectively by c and d. Then, for any two

distinct polynomials Mi and Mj,

1. The coefficients and degrees of S{Mi,Mj) are bounded by <? and 2d.

2. NFM(Afi,Mj) can be computed with at most 3^"(d + l)"^"''"^) arithmetic steps, and its

coefficients and degrees are bounded respectively by

^2+3"(d+ir("+")/^ and 2(d+ir. D
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